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Abstract
Phase-field modelling, as it is understood today, is still a young discipline in condensed matter
physics, which established itself for that class of systems in condensed matter physics, which
can be characterized by domains of different phases separated by a distinct interface. Driven out
of equilibrium, their dynamics results in the evolution of those interfaces, during which those
might develop into well-defined structures with characteristic length scales at the nano-,
micro- or mesoscale. Since the material properties of such systems are, to a large extent,
determined by those small-scale structures, acquiring a precise understanding of the
mechanisms that drive the interfacial dynamics is a great challenge for scientists in this field.
Phase-field modelling is an approach that allows us to tackle this challenge simulation-based.
This overview summarizes briefly the essentials of the conceptual background of the phase-field
method, as well as recent issues the phase-field community is focusing on, as far as they are
related to nucleation. To that end a brief introduction to the basic understanding underlying the
diffuse interface description, which is the conceptual backbone of phase-field modelling, is
given at the beginning, followed by a detailed picture of its achievements so far in applications
to nucleation phenomena in metals and colloids. Within the most relevant fields of condensed
matter physics, approached by phase-field modelling until now, applications to metallic systems
are a traditional domain of phase-field modelling and nucleation phenomena therein have been
addressed by several groups. This paper provides an overview of these. Advances in the field of
colloidal systems, on the other hand, are only more recent and are addressed here in the context
of contributions to soft matter physics in general.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

This introduction to the phase-field part of this Journal of
Physics: Condensed Matter special issue does not aim at
a comprehensive review of phase-field modelling. For such
recent reviews the reader is referred to [1–3] and references
therein. Here the idea is rather to put together some basic
concepts and some recent issues of phase-field modelling as
far as they are relevant for the topic of this volume. To that
end this overview paper starting the volume’s phase-field part
will focus on an overview of contributions based on phase-field
modelling to nucleation as well as soft matter systems as the
larger class of systems to which colloids belong.

This paper is organized as follows. First I briefly
summarize some basic concepts underlying phase-field
modelling. Afterwards I discuss recent issues in the phase-
field community. Successively I will address contributions
to nucleation and soft matter systems and I conclude with an
outlook.

2. The basic concept of phase-field modelling

Many inhomogeneous systems involve domains of well-
defined phases separated by a distinct interface. If they are
driven out of equilibrium one phase will grow at the cost
of the other. Examples are phase separation by spinodal
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decomposition or nucleation and subsequent growth of the
nucleus in the nourishing phase [4]. Another example which
has often been discussed as a paradigmatic problem is that
of dendritic solidification [5–7, 10]. The phenomenological
description of these phenomena involves the definition of
a precisely located interfacial surface on which boundary
conditions are imposed. One of those boundary conditions
typically yields a normal velocity at which the interface is
moving. This is the so-called sharp interface approach,
adopted both in analytical and numerical studies for a variety
of contexts involving a moving boundary. The origin of
such a description is often transparent, being obtained by
symmetry arguments and common sense as well as mass
and energy conservation considerations. Nevertheless the
properties of sharp interface models can be quite subtle as in
the case for dendritic growth. This is strongly coupled to the
question of how to view the interfacial surface. Already when
introducing the notion of a surface quantity Gibbs implicitly
entertained the idea of a diffuse interface [8]: any density
of an extensive quantity (e.g. the mass density) between
two coexisting phases varies smoothly from its value in one
phase to its value in the other. The existence of a transition
zone, though microscopically of atomic extent, underlies this
definition of surface quantities as given by Gibbs. In phase
transition phenomena, this notion has been employed in the
spirit of Landau and Khalatnikov [11], who were the first
to introduce an additional parameter—i.e. a phase field—to
label the different phases in their theory on the absorption
of liquid helium. Essentially phase-field modelling, as it
appeared subsequently in the literature in the context of
phase transition phenomena [9, 12], is connected to such
an additional order parameter. Clearly such models have
advanced numerical treatment as well as understanding of
interfacial growth phenomena since.

Even though quite a young approach to tackle such
problems, phase-field models have been employed by different
groups in quite different spirits. One might even be tempted
to say that a variety of philosophies accompanying phase-
field modelling have already emerged. One way to view this
method to model interfacial growth is to understand it as a
numerical technique, which helps to overcome the necessity
of solving for the precise location of the interfacial surface
explicitly in each time step of a numerical simulation as
achieved by the introduction of one or several additional phase-
field variables. In such an approach the phase-field variables
are continuous fields which are functions of space r and time t .
They are introduced to describe the different relevant phases.
Typically these fields vary slowly in bulk regions and rapidly,
on length scales of the order of the correlation length ξ , near
interfaces. ξ is also a measure of the finite thickness of the
interface. The free energy functional A determines the phase
behaviour. Together with the equations of motion this yields
a complete description of the evolution of the system. In
other contexts, such as critical dynamics [13, 4, 14], the fields
are order parameters distinguishing the different phases. In
a binary alloy, for example, the local concentration or sub-
lattice concentration can be described by such fields. The ideas
involved in this approach have a long history, referring back to
van der Waals [15, 16].

With this background the materials science community
associates the use of continuum field models in particular
with the work of Cahn and collaborators [17, 9, 18]. Within
their contribution to the field, phase-field models are more
than just a ‘trick’ to overcome numerical difficulties. Rather
they are rigorously derived based on the variational principles
of irreversible thermodynamics as founded by Onsager [19].
Then, ensuring thermodynamic consistency of the model
equations can serve as a justification of a phase-field model.
In this sense phase-field models can also be formulated for
problems for which sharp interface equations are not yet
available. Consequently it might be their analysis which yields
a formerly unknown sharp interface formulation and helps to
clarify the physics in the interfacial region.

One has to contrast this procedure with a very established
second way to validate a phase-field model. This second
approach assumes that a given sharp interface formulation of
the growth problem is the correct description of the physics
under consideration. On the basis of this assumption, a phase-
field model can be justified by simply showing that it is
asymptotic to the correct sharp interface description, i.e. that
the latter arises as the sharp interface limit of the phase-field
model when the interface width is taken to zero. Obviously
this procedure works only for cases in which a well-established
set of continuum equations describing the dynamics in the
sharp interface formulation does exist. Moreover, employed
in this way phase-field models do not seem to be much help to
elucidate the physics of the interfacial region beyond what is
captured within the sharp interface model equations.

However, the latter is only partially true and leads to a third
philosophy appearing in the phase-field community lately. It
is rooted in the understanding of the interfacial surface to be
finite in the sense of Gibbs denoted above: if one assumes a
phase-field model to be thermodynamically consistent and to
describe a physical situation for which an established sharp
interface formulation exists, as well, then, certainly, in the
sharp interface limit the phase-field model should correspond
precisely to that sharp interface formulation. However, keeping
in mind that the interface can be understood to be of finite
width, not only the sharp interface limit of a phase-field model
is a meaningful physical limit, but also the so-called thin
interface limit introduced by Karma and Rappel [20–22].

To clarify the difference between the sharp interface limit
and this thin interface limit here I will consider the growth of
a dendrite with tip radius R into an undercooled melt [23].
Under more general circumstances, R might be representative
of a typical macroscopic length scale such as the container
size. For dendritic solidification at large undercoolings the
growth is rapid and the radius of curvature of the dendritic
tip is relatively small. As a consequence effects of capillary
action and kinetics on the local interfacial temperature can be
significant. In this regime, sharp interface limits of the phase-
field equations have been performed [24–29], which assume
that the dimensionless interfacial temperature u is of the order
of the small parameter ξ/R. Contributions from capillary
effects and kinetics can be regarded to be of the same order.
In this limit one also considers ξ to be small compared to
the capillary length lc, which presents a stringent resolution
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requirement for a numerical computation that aspires to
describe this limiting case. At low undercoolings, on the
other hand, dendrites grow more slowly and have a larger
radius of curvature, so that it is reasonable to model capillary
effects and kinetics as small corrections. Karma and Rappel
refer to the corresponding analysis as the thin interface limit.
For this thin interface limit one assumes ξ � R but allows
ξ ∼ lc. Almgren [30] has described this analysis as isothermal
asymptotics, since to leading order in ξ/R the temperature is
isothermal throughout the interfacial region with u = O(ξ/R).
An extension to general non-isothermal multicomponent alloy
systems allowing for arbitrary phase diagrams with two phases
was achieved in [31] only recently based on a second-order
asymptotics.

Now again one interest in employing such an isothermal
asymptotics or thin interface limit can be understood to be
of numerical origin: it can serve to legitimize a choice
of model parameters which ensures an improved numerical
performance. On the other hand, isothermal asymptotics can
also be used to obtain first-order generalizations of the well-
known Gibbs–Thompson relation, which usually yields the
temperature value locally at the interface. In turn, such a
generalization can facilitate subsequent stability analysis of the
model.

Thus currently phase-field modelling is a field in which
numerical efforts as well as an intense focus on thermodynamic
backgrounds and asymptotic behaviour of the models drive
the development of this approach. It is this symbiosis which
opens up new perspectives to gain further understanding about
interfacial growth problems, if one extends the paradigmatic,
purely diffusion-limited, dendritic growth problem step by
step to further physical mechanisms such as, for example,
additional hydrodynamical or mechanical driving forces.
Moreover, this allows us to also tackle the behaviour of
other material systems such as soft matter systems with
the perspective, on the one hand, to investigate at least
paradigmatic features of fundamental problems of condensed
matter physics related to interfacial and phase dynamics on
a general, system-independent level for the easiest accessible
material systems.

3. Recent issues in phase-field modelling

The efforts described in this paper so far have resulted in
very elaborate model formulations as well as very elaborate
numerical implementations (see, e.g., [33]), which by now
allow us to simulate, for example, the growth of a single
dendritic microstructure by taking into account at the same
time long-range transport fields in reasonable time and high
spatial resolution. Thereby such approaches constitute an
important contribution to carry out the relevant parameter
studies to identify the mechanisms determining the coupled
phase and micro- or nanostructure dynamics in a condensed
matter systems. In computational materials design, for
example, this allows us to investigate the relation between
processing parameters and microstructure evolution and—
at best—also successively the materials properties at the
macroscale of a material systems via phase-field model
parameter studies.

Figure 1. The result of a simulation where the phase-field approach
has been coupled to a Monte Carlo scheme. The coupled approach
has been applied to epitaxial growth of a vicinal surface. As depicted
in the figure, the microscopic structure of the vicinal steps is captured
via the phase-field function, whereas the deposited atoms are
resolved as single atoms via the Monte Carlo scheme. The precise
coupling algorithm is described in [36]. Figure courtesy of M Radke
de Cuba.

3.1. Designing multi-scale models based on the phase-field
approach

The above reveals that there is an inherent challenge to
the simulation-based study of coupled phase and structure
evolution problems in condensed matter physics, to which
phase-field models can be applied: the latter is essentially a
multi-scale dynamics, i.e. a dynamics where different evolution
paths occurring at different length and timescales are strongly
coupled to each other. On this background it is quite easy
to understand that, in the further development of the phase-
field method in the context of computational materials design,
a lot of activities are concerned with this ‘scale-bridging’
issue. Basically three ways have emerged in the community
to do so. The first is to design innovative algorithms
which couple different computational techniques originally
designed for complementary scales such as, for example, DLA
(diffusion-limited aggregation) [32], LBA (lattice Boltzmann
automata) [34] or MC (Monte Carlo) [36] (see figure 1)
schemes to a phase-field model. The second is to use
advanced numerical techniques, such as multi-grid, adaptivity
and parallelization,to do fast computations for several scales
based on a single model approach [38, 37, 33]. A third
possibility arises from analytics, i.e. rigorous homogenization
methods where one identifies the most relevant dynamical
processes at each scale and develops a scale-bridging model
based on these via expansion techniques [35]. With respect
to the first way, i.e. the coupling of different computational
techniques originally designed for complementary scales,
one has to distinguish between two approaches to do so:
the first is to couple the different techniques dynamically,
such that in every time step of the overall algorithm
calculations with both methods are carried out and well-
defined quantities are continuously evaluated and exchanged
across the scales. The examples above [32, 34, 36] fall
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Figure 2. Illustration of the general multi-scale
first-principles/phase-field method following a weak coupling
coupling concept describe in [39]. Redrawn from [39] with
permission of the authors.

into this category. From a computational point of view
this is still very demanding and possible only for carefully
selected problems. Certainly homogenization methods can
help to establish more model approaches of this kind in
the future. A second approach is the calculation of
physical quantities, which are determined at lower scales of
the overall simulation and can be assumed to be constant
during the simulation at the larger scales, a priori to insert
them into the upper scale simulations as fixed parameters.
Whereas the latter has sometimes been termed weak coupling,
the former is often referred to as hard or full dynamic
coupling. A very general multi-scale first-principles/phase-
field method following a weak coupling concept has recently
been developed in [39]. It can be pictured as depicted in
figure 2.

Apart from these ‘scale-bridging’ efforts, likewise
noteworthy broader directions of further development of the
phase-field method have emerged.

3.2. Simulating nanoscale interfacial dynamics in condensed
matter physics

What’s remarkable about this point is that, due to the
continuum field nature of the phase-field approach, one would
claim that it should not be valid in the nanoscale region.
However, due to the successes of continuum approaches
in nanofluidics it appears to be justifiable to proceed with
phase-field models for phase transition problems of a similar
physical nature at this scale, as well. Indeed quite successful
studies have been carried out already [41]. Also the idea
of employing phase-field models to investigate heterogeneous
nucleation dynamics as reviewed in section 4 is based upon this
underlying physical picture.

3.3. Dynamics in soft matter systems at the micro- and
nanoscale

The application of phase-field modelling to soft matter systems
is still more recent than its application to metallic alloys,
which corresponds to the fact that soft matter physics as
such is certainly still more of an emergent scientific field
than the classical metal physics. Nevertheless there is a
relation between the two in the following sense: colloids—
displaying a structural length scale between several nanometres
and one micrometre—have started to establish themselves
as model systems to investigate fundamental questions that
concern the phase and structure dynamics of metallic alloys.
The reason is that, from an experimental point of view, the
parameters which quantify the nucleation and growth kinetics
of these material systems can be measured more easily than
in, for example, metallic melts. This concerns, among others,
the nucleation rate, the interfacial energies as well as the
kinetic and capillary anisotropies of a phase interface. For
this reason the investigation of nucleation and initial growth
dynamics in an interdisciplinary effort, spanning colloidal
and traditional metallic material systems, seems promising to
yield new insights also for the latter. It comes along with
the fundamental question of condensed matter physics also
underlying the priority programme 1296 [40] and thus the
papers of this volume: can the analogy between different
condensed matter systems be taken that far so that the
investigation of experimentally and theoretically simpler-to-
handle systems can answer questions of interfacial and phase
dynamics in a system-independent general manner?

Another prominent soft matter model system is that of
a liquid capsule enclosed by a thin elastic shell. Looking
at this model problem one realizes that modelling its small-
scale dynamics shares again a lot of challenges with today’s
problems to obtain reliable, quantitative micro-mechanical
models for the dynamics in material systems. For liquid
capsules these problems have recently received considerable
attention in cellular biology, bioengineering, and micro-
encapsulation technology (see, e.g., [135] and references
therein). Lately also in this field phase-field models have
been successfully applied, e.g. to the dynamics of microscopic
vesicle membranes as red blood cell membranes.

Sharing a lot of the challenges of today’s problems in
materials science applies to further soft matter systems such
as polymer systems and liquid crystals as well. Also in
these fields contributions by phase-field modelling could be
achieved, which will be reviewed in the following.

In all of the examples of this section the further
development of phase-field modelling benefits largely from
strong collaborations with experimental partners to verify
models but also to get a better feeling for the accuracy of
model parameters and basic mechanisms essential to grasp
in any model description. Certainly the above survey cannot
claim completeness due to the starting popularity of phase-
field modelling in quite different communities. However, it
reflects to a large extent the content of ‘phase-field-dominated’
sessions at related conferences such as the national physics
conferences in Europe and the APS spring meeting.

4



J. Phys.: Condens. Matter 21 (2009) 464103 H Emmerich

4. Nanoscale simulations of nucleation in
multicomponent and multi-phase alloys

The application of phase-field modelling to nucleation as
a phenomenon at the nanoscale is justified, if one takes
into account the great success of continuum approaches in
nanofluidics as proven by vast comparison to experiments.
Employed in this manner it provides an approach allowing us
to account for effects of the physical diffuseness of a nucleus
interface and thereby go beyond classical nucleation theory1.
To put the development of phase-field modelling for nucleation
phenomena in context, I will first provide a brief review of the
classical concepts of nucleation theory to which I refer later
in the remainder of the introduction to this section, before I
discuss the more recent phase-field-based contributions to this
field.

Nucleation is a complex fluctuation phenomenon. Atom-
istic simulations performed by Swope and Andersen [48] and
Wolde and Frenkel [49] reveal that, even during homoge-
neous crystal nucleation in a single-component liquid, several
local atomic arrangements (bcc, fcc, hcp, icosahedral) com-
pete, of which ofttimes a metastable phase becomes dominant.
For multicomponent and multi-phase alloys the complexity in-
creases, as the composition of nuclei enters as an extra state
variable. Nevertheless, the development of approaches towards
multicomponent nucleation is still based on the classical ki-
netic theory of nucleation, which had first been formulated
by Farkas [50] and Becker and Döring for homogeneous nu-
cleation, and was successively adopted for general first-order
phase transformations in condensed matter physics by Turn-
bull and Fisher [51]. The approach relies on a set of master
equations that consider only single-molecule attachment and
detachment processes (a good approximation at the early stages
of solidification). Analytical as well as numerical treatment of
the problem indicates that, after a transient period, steady-state
conditions are established, under which the nucleation rate,
i.e. the net volumetric formation rate of critical fluctuations,
can be expressed as

I = I0 exp

(
�F�

kBT

)
. (1)

Here I0 is the nucleation prefactor, F� is the free energy
of critical fluctuations, while kB and T are the Boltzmann
factor and the temperature, respectively. In determining
the free energy of the heterophase fluctuations, the classical
nucleation theory relies on the droplet model (introduced
by Gibbs for studying phase stability), which views the
heterophase fluctuations as spherical crystals, whose free
energy is expressed in terms of their radius R and the
volumetric free energy difference �g(<0) between bulk and
crystal and the undercooled liquid, as well as the interfacial
free energy γ :

F =
(

4π

3

)
R3�g + 4π R2γ. (2)

1 Note that, in this context, essentially the width over which the phase-field
variable varies gains a physical interpretation.

Figure 3. Heterogeneous nucleation of a ‘spherical cap’-shaped
second phase β on a planar initial phase α according to the ‘spherical
cap’ model. This figure, just as for further figures in this section,
courtesy of R Siquieri following [84].

Equation (2) reveals that a maximum of F� =
(16π/3)γ 3/�g2 is reached at the critical radius R� =
−2γ /�g.

The adaptation of this classical droplet model to
heterogeneous nucleation has been reviewed by Christian [52].
The most commonly discussed model in this context is the
spherical cap model, taking into account the free energy
reduction due to the creation of a triple junction line between
the nucleating solid, the liquid and a pre-existing solid phase
(container wall, foreign particle, primary phase), which acts
as substrate (see figure 3). Under such conditions only a
fraction of the homogeneous nucleus needs to be formed by
random fluctuations, a phenomenon that reduces the height
of the nucleation barrier. For a planar interface, the critical
fluctuation is a spherical cap, whose size is determined by the
contact angle θ between the solid–substrate and liquid–solid
interfaces. This accounts for the case where heterogeneous
nucleation comes along with partial wetting of the seed
nucleus. A still different nucleation mechanism, which is
not discussed in the following, is based on complete wetting.
Details on this mechanism can be found in [164], and in
relation to heterogeneous nucleation in [165].

In the above partial wetting scenario the contact angle
is fully determined by the free energies of the solid–liquid,
solid–substrate and liquid–substrate interfaces. Under such
conditions, the ratio of the free energies of the heterogeneous
and homogeneous nuclei is given by the catalytic potency
factor:

f (θ) = (2 + θ)(1 − cos θ)2/4. (3)

The drawbacks of classical nucleation theory emerge from
those of the droplet model, which rely on the thermodynamic
properties of the macroscopic bulk phase, when calculating
the free energy of near-critical clusters. According to the
experiments by Howe [53] and Huisman et al [54] and
computer simulations, as reviewed by Laird and Haymet [55],
the crystal–liquid and crystal–glass interfaces are diffuse on
the molecular scale, extending over several molecular layers,
with an interface thickness comparable to the size of critical
fluctuations. This invalidates the main assumption of the
droplet model, that the interface thickness is negligible with
respect to the size of the fluctuations. As a consequence two
new challenges emerge:

(i) To derive a kinetic theory that incorporates the differences
in the diffusion of the individual species.
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(ii) To develop models that include the dependence of the
Gibbs free energy and interface free energy on cluster
composition and cluster size for multicomponent alloys.

Reviews by Gunton [56], Granasy and James [57] and
Oxtoby [58] give a survey of these new developments. Here
I only focus on theories that address nucleation in binary and
multicomponent alloys, in particular the contribution of phase-
field modelling with respect to the two upper issues, to clarify
the kind of contribution that can be expected by phase-field
theory in this context.

Even if the application of phase-field modelling to
nucleation can be justified as discussed in section 3.2, any kind
of field theoretical approach to nucleation needs to be validated
carefully by comparison to molecular simulation models and
density functional theory predictions as well as experiments
(see figure 9). Since the molecular modelling addressing
fundamental nucleation-related issues has quite often been
done for the easiest accessible model systems, this is also
a field where the interdisciplinary research for fundamental
new insights into the mechanisms of heterogeneous nucleation
naturally becomes a material systems spanning approach. In
the following I will therefore briefly review the basic steps
in theory development for homogeneous and heterogeneous
nucleation, independent of the material system underlying for
validation. This comprises molecular simulation and DFT
results to demonstrate how phase-field modelling is generally
embedded in these nucleation-related investigations.

The classical kinetic model has been extended to
nucleation in binary and multicomponent systems by
several authors: Kozisek and Demo [59], Wilemski and
Wyslouzil [60], Slezov et al [61], Kozisek et al [62], Slezov
and Schmelzer [63] and Schmelzer et al [64]. A general theory
for phase separation, which includes coagulation/splitting, has
been developed by Binder and Stauffer [65]. An essential
finding in this context was that, for significantly different
diffusivities of the constituents, the nucleation pathway may
avoid the saddle point of the free energy surface as shown
by Greer et al [66]. Recent work by Kelton [67] takes
into account the coupled fluxes of interfacial attachment
and long-range diffusion. The numerical solution of his
model reveals that the time-dependent nucleation rate scales
with the smaller mobility and that the steady-state rates and
induction times differ significantly from values predicted by
the classical theory. The kinetics of formation of phases
with arbitrary stoichiometric compositions in multicomponent
solid solutions has been addressed by Slezov and Schmelzer,
successively [63]. More recently, a new theoretical approach
for nucleation and growth in multicomponent systems has
been proposed by Schmelzer et al [64], which relies on an
improved cluster model that considers non-bulk local states.
In the spirit of such improved cluster models Granasy used
a phenomenological diffuse interface theory [68], which can
be understood as a first step towards a phase-field model
for nucleation. Doing so he took into account the finite
thickness of the nucleus interface. This allowed him to
remove the several orders of magnitude difference seen
between theory and experiment for vapour condensation [69]
and crystal nucleation in [70]. This model has been

generalized by Volkman et al [71] and Moire and Herlach [72]
for nucleation in ternary alloys and by Kvamme [73] for
multicomponent alloys. In a recent model of binary nucleation,
Schmelzer [74] determines the optimum composition of
nuclei via a minimization of the sharp interface cluster free
energy with respect to cluster composition, while relying on
a composition-dependent interface free energy and regular
solution thermodynamics. This approach leads, much like the
field theoretical models, to a diminishing nucleation barrier
when approaching the spinodal. A multicomponent version of
the theory has been presented in [64]. While the application
of models for condensation and phase separation has been
developed in detail, its generalization for crystallization in
liquids and glasses is less straightforward, as it requires a
knowledge of the interfacial free energy as a function of
temperature and composition. This requires further theoretical
considerations and modelling. Recent developments of the
theory for heterogeneous nucleation include the analysis of the
role played by impurities and adsorbed layers by Cantor [75]
and Greer [76], and a refined description of the kinetics which
controls the mechanisms of phase selection in solidification of
atomized droplets by Perepezko [77].

Generally, two contributions of phase-field theory to
develop the above understanding further are possible: the first
concerns only the energetics of the nucleation event, while the
second applies to studies of simultaneous crystal nucleation
and growth, which contains the additional challenge of a proper
statistical mechanical treatment of the nucleation process.
They are discussed in sections 4.1 and 4.2, respectively.
Moreover, section 4.3 reports a study where the statistical
part has been treated by a Monte Carlo model, which has
been coupled to a phase-field model formulation for the phase
transition dynamics. The capacity of the resulting numerically
very efficient overall model is demonstrated for inoculation.

4.1. Nucleation energetics in binary alloys

Realizing that the solid–liquid interface is known to extend
to several molecular layers, in modelling nucleation it
becomes a challenge to pay particular attention to the
diffuseness of a nucleus interface as successively enforced by
experiments [78], computer simulations [79] and statistical
mechanical treatments based on the density functional
theory [80]. As a consequence Granasy et al continued their
above approach [68] and were the first to employ a phase-field
model to determine the energetic nucleation barrier of nuclei in
homogeneous nucleation [70, 81], followed by Roy [82].

In [47] this work was extended to study energy barriers
for heterogeneous nucleation events as well. In this work a
special emphasis was put on the nucleation event of one phase
on top of another as found, for example, in a peritectic material
system. For a more detailed understanding of the phase-
field approach to describe this, we review it in the following
paragraphs.

In a peritectic material system it is particularly relevant to
understand the nucleation of the peritectic phase on top of the
properitectic phase, since this is the nucleation process yielding
the stationary growth morphology. For this specific nucleation
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Figure 4. Investigation of the peritectic transformation under the influence of convection. The dark circle indicates the properitectic phase and
the light structure the peritectic phase, which is nucleating on top of the properitectic one. Arrows are vectors indicating the velocity of the
hydrodynamic field in the molten phase. Figures courtesy of R Siquieri.

process the precise configuration of the properitectic phase,
i.e. its free energy on the one hand and its morphology on the
other [83], should contribute to the precise nucleation rate.

Nevertheless the spherical cap model for the nucleation
of a second phase β on an initial phase α assumes the initial
phase as a planar front as depicted in figure 3. In this picture
the interfacial tensions γαL, γαβ and γβL balance each other
enclosing a contact angle θ , if the following condition is
fulfilled:

γαL = γαβ + γβL cos θ. (4)

�F∗ of equation (1), determining the activation energy of
the respective heterogeneous nucleation event, is then given,
respectively, in two and three dimensions by

�F∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ 2
βL

�FB
× θ2

θ − (1/2) sin 2θ
, 2D

γ 3
βL

�F2
B

× 16π(2 + cos θ)(1 − cos θ)2

12
, 3D.

(5)
Here �FB is the difference between the bulk free energy of the
peritectic phase and of the liquid phase.

The starting point of the phase-field approach given
in [47] to go beyond this is the free energy functional of a
representative volume of the investigated material system. This
free energy functional is given by the volume integral:

F =
∫

V
f dV , (6)

with the free energy density defined as

f = W (θ)2

2

∑
i

(∇ pi)
2 +

∑
i

pi
2(1 − pi)

2

+ λ̃

[
1
2

[
c −

∑
i

Ai(T )gi(p)

]2

+
∑

i

Bi(T )gi(p)

]
(7)

where W (θ) = W0(1 + ε4 cos 4θ) depends on the orientation
of the interface, with θ = arctan ∂y pi/∂x pi , ε4 being the
measure of the anisotropy and λ̃ being a constant. The
function gi couples the phase fields to the concentration and
the temperature:

gi = pi
2

4
{15(1 − pi)[1 + pi − (pk − p j)

2] + pi(9pi
2 − 5)}.

The coefficients Ai(T ) and Bi(T ) define the equilibrium phase
diagram [46]:

Ai(T ) = ci ∓ (ki − 1)U, AL = 0,

Bi(T ) = ∓AiU BL = 0,

where U = (Tp − T )/(|mi |�C) is the dimensionless
undercooling, ki are the partition coefficients, and AL and BL

are the corresponding liquid coefficients.
Three phase fields pi ∈ [0, 1], where

∑3
i=1 pi = 1, are

employed in this phase-field approach. These pi label the
properitectic, the peritectic and the liquid phase, respectively,
i.e. i = α (for the properitectic phase), i = β (for the
peritectic phase) and i = L (for the liquid phase) compose
p ≡ (pα, pβ, pL). Their dynamical evolution is derived from
the free energy functional F :

∂ pi

∂ t
= 1

τ

δF
δpi

,

where τ is a relaxation time. The concentration field is given
by

∂c

∂ t
+ pLv · ∇c − ∇ ·

(
M(pi )∇ δF

δc
− JAT

)
= 0. (8)

Here M(pi) denotes the mobility and JAT an anti-trapping
term. The basic form of these model equations has been
derived initially in [46]. Their extension to anisotropy effects
based on the term W (θ) was developed in [47], just as well as
their extension for an additional hydrodynamic field equation
in the liquid phase realized as follows:

∂ pLv

∂ t
= −pLv ·∇v − pL∇p + 1

Re
∇2 pLv + M2

1 . (9)

Equation (9) is a modified Navier–Stokes equation, where
Re = ρU

ν
. M2

1 is a dissipative interfacial force per unit volume
and is modelled as in [85].

A representative evolution according to the full set of
model equations (6)–(9) is depicted in figure 4, where time runs
from the upper left picture to the upper right and lower left to
lower right. The light circle indicates the properitectic phase
and the dark structure the peritectic phase, which is nucleating
on top of the properitectic one. Comparing peritectic growth
with and without convection one finds that hydrodynamic

7



J. Phys.: Condens. Matter 21 (2009) 464103 H Emmerich

Figure 5. Comparison of peritectic growth with and without
convection. Figures courtesy of R Siquieri.

transport in the melt enhances the growth process considerably.
This relation between melt flow and solidification dynamics
is summarized in figure 5, where two pictures of growing
microstructures are given at the same set of parameters except
that the right microstructure is subject to flow whereas to the
left growth proceeds purely diffusion-limited. These results
are in qualitative agreement with experimental investigations
of such peritectic material systems (see, e.g., [86]).

In order to employ (6)–(9) to investigate the heterogeneous
nucleation event of a peritectic material system it is essential
to realize that such a nucleation event arises as a critical
fluctuation, which is a non-trivial time-independent solution of
the above governing equations2. Solving (6)–(9) numerically
under boundary conditions that prescribe bulk liquid properties
far from the fluctuations (pi → 1 and c → c∞ at the outer
domain boundaries) and zero field gradients at the centre of the
respective phases, one obtains the free energy of the nucleation
event as

�F∗ = F − F0. (10)

Here, zero field gradients arise naturally due to the stationarity
of the problem if the ‘seed’ phase is chosen large enough3.
Moreover, F is obtained by numerically evaluating the
integration over F after having the time-independent solutions
inserted, while F0 is the free energy of the initial liquid.
Based on (10) the nucleation rate is then calculated as given
by (1), where the nucleation prefactor I0 of the classical
kinetic approach is used, which proved consistent with
experiments [89]. Note that, due to this at this point phase-
field theory does not cast more light on the question of whether
equation (1) is an appropriate formulation for the nucleation
rate or not. Rather it contributes to an illustration of the
influence of the underlying morphology of a properitectic
nucleus (or seed nucleus in general) on the energetic barrier
for the nucleation of the peritectic on top of it (respectively
a second phase in general). Based on (1)—regardless

2 Obtained following the standard variational procedure of phase-field theory
(see, e.g., [87, 88, 38]).
3 Thermodynamically this is always possible. The functioning of the
underneath relaxation procedure does not depend on the volume of the
properitectic phase as such, but on the relative volume of the properitectic
phase to volume which we chose as initialization for the peritectic phase.
This has to be tuned close to a ratio to be expected from the position in the
phase diagram to ensure convergence within the limit of a reasonable number
of variations.

Figure 6. Comparison of the nucleation rate on top of a facetted
nucleus to the one on top of an unfacetted nucleus. Figure courtesy
of R Siquieri.

Figure 7. Comparison of the nucleation rate on unfacetted nuclei of
different radii. Figure courtesy of R Siquieri.

of indications that there is a demand to reinvestigate the
latter, as well—the respective findings can be visualized by
the nucleation rates obtained for different morphologies of
different underlying seed phases as depicted in figures 6
and 7. One can take from figure 6 that the less facetted
the properitectic phase, the larger the nucleation probability
for a peritectic nucleation on top of it. For this result it is
important to understand that the second phase was nucleated
in the corner of the first. For the contribution resulting
from the radius of the properitectic phase a similar relation
is true: the larger the radius of the properitectic phase, the
larger the probability of a peritectic nucleation on top of
it. Both findings are in qualitative agreement with atomistic
simulations. However, the new features the phase-field
approach to heterogeneous nucleation inherently includes are
(I) the notion of a diffuse interface, as well as (II) long-range
interaction effects due to our continuum field approaching
towards the problem. Thereby it meets the open issues (i) and
(ii) stated below equation (3). In this sense it poses a valuable
new approach towards heterogeneous nucleation in general,
taking into account kinetic and thermodynamic as well as long-
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range interaction effects and differences in the diffusion of the
individual species plus the dependence of the Gibbs free energy
and interface free energy on the nucleus composition at the
same time.

4.2. Nucleation and subsequent growth

To extend the phase-field approach described in section 4.1
such that it simulates nucleation events together with
subsequent growth processes, a proper statistical mechanical
treatment of the nucleation process is essential. This requires
the introduction of uncorrelated Langevin noises into the
governing equations, with amplitudes that are determined by
the fluctuation–dissipation theorem as shown by Pavlik and
Sekerka [90, 91]. In this context the development of phase-
field models has been embedded in the general development of
field theoretical models for homogeneous and heterogeneous
nucleation, after the realization that the nanometre-sized
heterophase fluctuations, that form on typical experimental
timescales, can naturally be handled in the framework of
continuum or field theoretic models that are able to address
local states, which differ from the bulk crystal or liquid states.
In general, these local physical states are characterized by the
locally averaged (coarse-grained) order parameters of these
models. The free energy of the inhomogeneous system then
becomes naturally a functional of the order parameter field.
In direct analogy to the case of the classical droplet model,
where the critical fluctuation represents a maximum of the
free energy function, here the critical fluctuation is given
by the extremum of the free energy functional. In the past
decades various field theoretic models have been developed
for crystal nucleation. Many of them are direct descendants
of the single-order-parameter-gradient theories by van der
Waals [15, 16] and Cahn and Hilliard [18]. In the classical field
theories of nucleation the free energy of the inhomogeneous
system (liquid and critical fluctuation) is approximated by local
functionals of the type

F =
∫

V
f [m(r)] + κ(∇m)2 dV , (11)

where m is a structural order parameter, which can be viewed
as the amplitude of the dominant Fourier component of the
crystal singlet density and κ is a constant, while the free
energy density f has a double-well form, which is asymmetric
in the undercooled state. The square-gradient term of the
order parameter accounts for the diffuse interface itself. The
simple square term limits the application of equation (11)
to systems where the interface itself is characterized by a
single length scale. This is classically assumed in the phase-
field community, where the order parameter has originally
been introduced to tackle the dynamical evolution of the
interface with respect to that of the nanoscopic or microscopic
structure it surrounds. Consequently the main attributes
required for the length scale of the diffuse interface width
is that it is smaller than any of the characteristic length
scales of the simulated condensed matter structures and that
it corresponds to the correlation length directly at the critical
point [38]. However, a functional of form (11) has, for several

years, also been employed to derive Ginzburg–Landau-type
continuum descriptions of, for example, polymer blends, see
for example [162]. In this context the interface between
different domains might be characterized by two length scales:
in a binary polymer blend at strong segregation there is
the intrinsic width describing the slope of the concentration
profile at the centre of the interface. Moreover, there is
the bulk correlation length, which quantifies how the wings
of the concentration profile approach the coexistence value
of the composition in the bulk. In this case equation (11)
is limited to the early stages of phase separation and weak
segregation. For the case, where this can no longer be
assumed, different gradient expansions have been devised,
e.g. for diblock copolymers [162, 163].

In the context of nucleation it is exactly the saddle point
of the free energy functional (11) which describes the critical
fluctuation (nucleus). The respective term m(r) emerges as a
non-trivial solution of the Euler–Lagrange equation:

δF

δm
= ∂ F

∂m
− 2κ∇2m = 0 (12)

under boundary conditions m → m0 for ‖r‖ → ∞ and
�m → 0 for ‖r‖ → 0, where δF/δm is the functional
derivative of the free energy with respect to the order parameter
field, while m0 = 0 is the order parameter of the undercooled
liquid.

Assuming spherical symmetry—a reasonable approxima-
tion considering the weak anisotropy of the interface free
energy—the Euler–Lagrange equation reduces to an ordinary
differential equation. If the free energy density is of piecewise
parabolic form, the Euler–Lagrange equation is linearized and
the solution can be found analytically. This method has been
used to address such problems as crystal nucleation and growth
in one-component liquids by Bagdassarian and Oxtoby [92]
and Granasy and Oxtoby [93], hard-sphere crystallization by
Wild and Harrowell [94] and crystallization in the presence
of metastable phases by Granasy and Oxtoby [95]. A more
complex single-order-parameter Cahn–Hilliard model relying
on a quadratic free energy density has more recently been in-
troduced by Granasy et al [96] to evaluate interfacial properties
from nucleation experiments.

An extension of the Cahn–Hilliard theory to nucleation in
multicomponent phase-separating systems is due to Hoyt [97].
Other important generalizations of the Cahn–Hilliard theory
are the Hohenberg–Halperin [14] C-type field theoretic models
in which the time evolution of the non-conserved structural
order parameter is coupled to other fields of conserved
dynamics. Models of this type are the first field theoretical
approaches for this scientific context, which can be termed
phase-field models. The first to actually introduce Langevin
noise in such model formulations were Elder et al [98]
followed by Drolet et al [99]. Subsequently Granasy et al
used a similar technique to simulate the nucleation of primary
dendritic particles with different crystallographic orientations.
To describe differences in the crystallographic orientation,
they introduced a non-conserved orientational field following
earlier attempts by Kobayashi et al [100, 101]. However,
other than Kobayashi, they extended the orientational field to

9



J. Phys.: Condens. Matter 21 (2009) 464103 H Emmerich

the liquid, where it fluctuates in time and space, a feature
reflecting the short-range order of the liquid. Such simulations
permitted the determination of the Kolmogorov exponent,
which describes the time evolution of the crystalline fraction
for multi-grain dendritic solidification and for anisotropically
growing particles interacting via diffusion fields (so-called soft
impinging). The results are consistent with devitrification
experiments in metallic glasses and have successively been
extended by Pusztai and Granasy [43] to solidification.

Technically the extension of the phase-field approach for
nucleation to nucleation and subsequent growth in multicom-
ponent alloys involves—besides the introduction of Langevin
noise—the introduction of further field variables for compo-
sition and orientation, which increase the number of coupled
Euler–Lagrange equations that define the fluctuation [102].
This poses computational restrictions, in particular since
the simulation of the Langevin-noise term in the governing
stiff partial differential equations is often prohibitively time-
consuming. One remedy is to simply increase the amplitude
with noise. This, however, raises the possibility that the fluc-
tuations, which initiate solidification, will differ from the real
fluctuations significantly. To avoid practical difficulties associ-
ated with modelling noise-induced nucleation, crystallization
in simulations is often initiated by randomly placing super-
critical particles into the simulation domain (see, e.g., Sim-
mons [103] or Lo et al, who merely mimicked the nucleation
event in peritectic alloys using such a procedure [44, 45]). An
alternative method has been proposed by Granasy et al [81]
who first calculated properties of the critical fluctuations and
then placed the latter randomly in the simulation domain, while
at the same time also adding a Langevin-noise term, which de-
termines whether these nuclei grow and dissolve.

An alternative way to proceed, which has been proven to
be numerically very efficient, consists in the coupling of the
phase-field model approach to a Monte Carlo approach for the
statistical aspects involved. The resulting model scheme is
described in section 4.3.

Moreover, focusing on the heterogeneous nucleation event
tied to the nucleation of a new nucleus on the surrounding
system’s wall, first steps were set by Castro [104] and Granasy
et al [105]. Castro [104] introduced walls into a single-order-
parameter model (one-component case) by assuming a no-flux
boundary condition at the interface (n∇φ = 0, where n is the
normal vector of the wall), which results in a contact angle
of 90◦ at the wall–solid–liquid triple junction. Subsequently
Langevin noise is introduced to model nucleation. Following a
similar route, Granasy et al [105] introduced chemically inert
surfaces (n∇φ = 0 and n∇c = 0 at the wall perimeter) into
a binary phase-field theory while incorporating an orientation
field, and performed simulations to address heterogeneous
nucleation on foreign particles, at rough surfaces and in
confined space (porous matter and channels). This work has
recently been extended by the author and others in [160, 161].

4.3. Phase-field simulations of inoculation

Formation of nanocrystalline microstructures from highly
undercooled liquids is associated with extremely high

Figure 8. Variation of the normalized interfacial energy with
undercooling, calculated based on a diffuse interface model of
nucleation [108]. The dashed line corresponds to the classical
nucleation theory. According to non-classical theories of nucleation,
the interfacial energy decreases with increasing undercooling and can
vanish at a non-zero critical temperature. Figure reprinted with
permission from [108]. Copyright 2002 by Elsevier.

nucleation rates, often orders of magnitudes larger than those
predicted from the classical nucleation theory [106]. Diffuse
interface models of nucleation provide an explanation for
this nucleation behaviour, in terms of the variation of the
solid/liquid interfacial energy with temperature [107]. Figure 8
shows an example of such variations [108]. In [108]
copious nucleation and subsequent nanocrystallization have
been simulated based on one overall approach. To do so,
the merits of standard phase-field and the so-called Potts
method [111] were combined. The resulting model was
extended by Hubert et al for surface diffusion effects [112].
In that form the model consists of two state parameters—the
phase field φ and the temperature T —as well as the orientation
order parameter θ .

The differential equations for ϕ and T can be derived from
the free energy functional [112, 38]:

F =
∫

[g(φ, T ) + 1
2ε2|∇φ|2 + 1

2ν
2φ2G(|∇θ |)] dV ,

where ε is the diffusion constant for the phase-field variable.
They are given by

∂ϕ

∂ t
= Mϕ

[
ε̄2η2∇2ϕ + ε̄2∇

×
(

8

π
DS∇

[
η2 2

π

(
− 1

ε̄2
∇2ϕ + ε̄2ϕ′(t)

)])]

+ ε2ηη′[sin(2θ)(ϕY Y − ϕX X ) + 2 cos(2θ)ϕXY ]
− 1

2 ε̄2[η′2 + ηη′′][2 sin(2θ)ϕXY − ∇2ϕ − cos(2θ)

× (ϕY Y − ϕX X )]
+ ε2�

+ 6(1 − ϕ)ϕ
L

Tm
(dtc(2ϕ − 1) + �T ) + Emis, (13)

with an anisotropy factor η = 1 + εas cos(2θ), � a random
number in the range of [−0.5; 0.5] and

∂T

∂ t
= �T

∂ϕ

∂ t
+ α∇2T . (14)
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Figure 9. Illustration of the interdisciplinary approach in the research priority programme Nucleation and growth kinetics in colloids and
metals—steps towards a scale- and system-bridging understanding [40]: to advance towards a system- and scale-bridging detailed
understanding of the energetics and kinetics of heterogeneous nucleation and microstructure formation, two different experimental (binary
colloids and binary metallic alloys) model systems are investigated jointly by experimental scientists working with different experimental
techniques together with theoreticians, whose expertise is likewise diverse, ranging from density functional theory (DFT) over molecular
simulations (MC/MD) to the phase-field method and who, at the same time, aim at a rigorous connection of these methods. Phase-field
modelling is an integral part of this research priority programme. Here this sketch serves as an example to demonstrate the different
‘dimensions’ of the interdisciplinary research setting, in which the phase-field method was able to develop itself over the last two decades by,
at the same time, contributing to more and more fundamental problems of condensed matter physics.

The first line of equation (13) represents the general phase-
field diffusion dynamics, the second surface diffusion. The
third and fourth lines yield terms accounting for the anisotropy
of the crystal [110]. Moreover, the fourth line contains a term
which models thermal fluctuations.

The mismatch energy Emis is given by

Emis =
∑

n

(F(θ) − F(θn)). (15)

This energy difference is determined by the sum over
neighbouring cells of the involved Monte Carlo algorithm.
During each step a new random orientation is determined for
each cell of that Monte Carlo scheme. There is a probability p
that the orientation switches from the old to a new one given
by

p = 1 − exp

(
Emis(θnew) − Emis(θold)

kT
+ ξ

)
, (16)

with ξ being a random factor. Periodic boundary conditions
are applied at the top and bottom borders.

Several merits result from employing the above Monte
Carlo algorithm for the evolution of the orientational order
parameter. Most significantly, this method would be suitable
to handle discontinuities in the orientation profiles. In
this way, and due to the fact that the number of allowed
orientations is finite, formation of non-physically diffuse
orientational boundaries is prevented. Moreover, due to
the probabilistic nature of the method, not only curvature-
driven grain coarsening, but also stochastic coarsening, can be

modelled. The latter is especially relevant for coarsening of
grains in the nanometre range [109].

In general one can state that the coupling of the Potts
and phase-field approach eliminates the common limitations of
both methods, i.e. problems with non-zero bulk driving forces
in the Potts [111], and with curvature-driven coarsening in
the frame-invariant phase-field approach [101]. Moreover, it
allows for an implicit modelling of nucleation behaviour at
high undercoolings—an important feature not offered by Potts.

5. Phase-field modelling in soft matter physics

In the field of soft matter physics phase-field modelling
is certainly still less established than in the field of metal
physics. Nonetheless figure 9, which captures the basic
concept underlying the priority programme [40], demonstrates
the perspective of approaching soft matter systems with
phase-field models for the example of nucleation in alloys:
in this context the deliberate collaborative advance jointly
with molecular modelling methods, DFT and respective
experimental studies appears as a promising scientific route
to develop phase-field models as truly scale-bridging models,
overlapping the simulation scales of the methods at the
molecular scale to some extent and extending it further to
the dynamics at considerable larger time and length scales—
all with the aim of obtaining a powerful tool to identify how
mechanisms of different scales act together for the precise
kinetics and energetics of such a fundamental problem of
condensed matter physics as nucleation. Since this is a big
challenge for any kind of complex condensed matter system, it
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seems challenging to have a closer look at still other fields of
soft matter physics, where in the past molecular models were
the main computational tools, with an analogous aim. The
basic potential of phase-field modelling in soft matter physics
is demonstrated for three prominent examples of that field in
the following—namely for polymer solutions, liquid crystals
and vesicles and thereby mainly for phenomena occurring
at the microscale. The chosen examples reveal that there
is an analogy in the step-by-step development of phase-field
models for soft matter systems compared to the one in metal
physics: starting from a phase-field model formulation for
a paradigmatic problem (spinodal decomposition) the further
development runs over multi-phase extension—as relevant for
liquid crystals—to multi-physics extension, which is obviously
essential to model vesicle dynamics. Any kind of soft matter
system displaying phenomena that involve an evolving, phase-
separating interface, could be a further example along this line,
such as, for example, a swelling polymer membrane [113] and
void–fluid interaction in ascorbic acids [114].

Exploiting the chance to develop scale- and system-
bridging approaches based on phase-field modelling also in the
context of the above three examples would basically have to
follow the same collaborative route as described and illustrated
for nucleation in figure 9. In the sense of that figure it
would strongly be tied to the identification of accompanying
condensed matter systems, where similar dynamical processes
occur at a different scale. However, a first step in this direction
might be to intensify efforts to tackle the relevant issue of
multi-scale model development solely in the context of an
individual soft matter system. In the field of soft matter
physics, even the latter is still much more of an open issue than
in the field of metal physics. A very recent step showing the
potential of scale-bridging modelling in the soft matter field
was taken by Shi and Voth [115]. They investigated phase
separation in mixed lipid bilayers based on a combined phase-
field/molecular dynamics approach.

5.1. The paradigmatic problems of spinodal decomposition
and crystallization of polymer solutions

Two widespread and well-studied phenomena in polymer
solutions, for which phase-field theory could already
successfully be applied, are spinodal decomposition and
polymer crystallization. With respect to the first one of the
most generic extensions of the Landau–Khalatnikov ansatz
to describe non-equilibrium phenomena is the Cahn–Hilliard
equation [18]. It can be understood as the classical theory for
the early stages of spinodal decomposition in polymer blends,
based on non-equilibrium thermodynamics [9]. In this context
the Cahn–Hilliard equation was obtained by postulating
that the local interdiffusion currents are proportional to the
gradients of the local chemical potential. Moreover, it has
to be assumed that this chemical potential can be derived
from a free energy functional of Ginzburg–Landau type. The
proportionality constant arising in proceeding like this is the
atomic mobility, which remains a phenomenological parameter
in this approach. To study homogeneous initial states, the
Cahn–Hilliard equation has been linearized around the average

composition and analysed in terms of Fourier modes. These
studies reveal an exponential growth of long wavelength
perturbations with time, whereas short wavelength fluctuations
are damped by the gradient terms related to the surface tension.
A typical length scale of the resulting domain pattern is then
given by the wavelength of the fastest growing mode.

To extend these investigations to far-from-equilibrium
conditions, several authors have developed nonlinear kinetic
equations based on Ising and lattice gas models [123–127],
which can be cast in the form of generalized Cahn–Hilliard
equations. The characteristic new feature of these approaches
is an atomic mobility, which depends explicitly on the details of
the microscopic dynamics. Such equations have successfully
been applied to the study of phase-separation dynamics in
binary and ternary systems [128–130] just as to dendritic
growth [131]. A further extension resulting in a phase-
field model taking into account also asymmetrical interaction
energies, respectively compositions, was developed in [132].
Based on the resulting model equations it became possible
to study also morphological features of decomposing polymer
blends far from equilibrium and to relate them to the interaction
parameters of the underlying microscopic model, such as, for
example, the decomposition of a metastable lamellar phase to
a stable cylindrical phase.

Focusing on the crystallization behaviour of polymers one
realizes a distinct difference to that of metallic systems: unlike
crystallization in the latter, polymer crystallization rarely
reaches thermodynamic equilibrium. Rather, most polymer
crystals are kinetically stabilized in some metastable states. Xu
et al [133] proved that the phase-field approach is capable of
describing this kind of phase transition phenomenon as well.
To capture the various possible metastable configurations of
a polymer crystal, Xu et al assumed the phase-field order
parameter in the solidification potential to be supercooling-
dependent, i.e. it can take intermediate values between 0
(labelling the molten phase) and 1 (labelling the perfect
crystal) even in the volume phases to mimic the imperfect
polycrystalline nature of polymer crystals. Qualitatively this
model approach allows us to identify various single-crystal
morphologies of isotactic polystyrene crystals such as faceted
hexagonal patterns transforming to non-facetted snowflake-
like morphologies with increasing undercooling.

Further phase-field studies of polymer blends concern
polycrystalline growth after the introduction of foreign (clay)
particles. The result is disordered dendritic structures termed
dizzy dendrites. These structures are formed by the engulfment
of the clay particles into the crystal, inducing the formation
of new grains. This phenomenon is driven by the impetus
to reduce the crystallographic misfit along the perimeter of
clay particles by creating grain boundaries within the polymer
crystal. This process changes the crystal orientation at the
dendrite tip, changing thus the tip trajectory (tip deflection).
To describe this phenomenon, Granasy et al [116] incorporated
a simple model of foreign crystalline particles into the phase-
field theory: in that framework the latter are represented by
orientation pinning centres—small areas of random but fixed
orientation—which are assumed to be of a foreign material,
which is not the solid reference phase. Phenomenologically
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this picture describes morphological changes originating from
clay particles in an efficient manner.

The development of a more quantitative phase-field
approach to polymer systems, which models the imperfect
polycrystalline nature in the volume phases rigorously taking
into account its physical origin, is still an open issue.

5.2. Phase and structure dynamics in liquid crystals

In the nematic phase of a liquid crystal its molecules are locally
oriented, giving rise to anisotropy in the viscosity and surface
tension. The degree of orientation depends on the proximity
of the other phases, namely the isotropic and for some liquid
crystals also the smectic phase. In that sense it still depends
on temperature, and so does the anisotropy, mainly in the
viscosity [117].

This appearance of different kinds of anisotropy and
also their clear dependence on temperature is a complication
which is beyond that of microstructure selection in dendritic
solidification in metallic alloys. Nevertheless the question
of how the pattern selection process in such a system is
influenced by anisotropy effects has been motivated by the
great influence it could be shown to have in dendritic systems
(see, e.g., [42]). Just as for dendritic growth respective
studies for liquid crystals were accompanied by phase-
field simulations [118–120]. These investigations helped
to establish a connection between the different kinds of
anisotropies described above and their influence on pattern
selection [120]. Moreover, their sensitivity to external
perturbations could be identified [121]. In that sense phase-
field models proved to be a valuable simulation alternative
to study the nonlinear dynamics at the micro- and nanoscale
also in such liquid crystal systems, which are otherwise
predominantly investigated via molecular simulations. (For
a recent review of molecular computer simulations for liquid
crystal systems, see [122].).

5.3. Vesicle dynamics driven by hydrodynamical and
mechanical forces

At the microscale vesicles can be viewed as closed membranes
which are suspended in an aqueous solution [134]. They
constitute a model system of biological membranes, which
separate an interior domain of usually larger viscosity from an
external domain of smaller viscosity. A prominent example
are red blood cells, where the ratio of the viscosity of their
interior fluid to the viscosity of the surrounding fluid in vivo
ranges between 5 and 10. The hydrostatics, hydrodynamics
and elastomechanics of such liquid capsules enclosed by thin
elastic shells or chemical and biological membranes consisting
of molecular networks have recently received considerable
attention in cellular biology, bioengineering and micro-
encapsulation technology (see, e.g., [135] and references
therein). Theoretical models at this scale have to be able
to describe the deformation dynamics of the cells taking
into account the effect of membrane bending stiffness [135],
effects of in-plane elastic tension [136, 137], membrane
viscosity [136, 138] and membrane incompressibility [139] in
a consistent manner.

In this field the classical numerical approach to study
the moving interfaces of the cells modelled accordingly is to
employ a computational mesh that has grid points directly on
the interfaces and thus constitutes a sharp interface approach.
Then the mesh has to deform due to the motion of the
boundary. Numerically this can, for example, be achieved
based on the boundary integral and boundary element methods
(see [140–142] and references therein). Keeping track of
the moving mesh may entail computational difficulties, and
large displacement in internal domains may cause mesh
entanglement. Typically, sophisticated remeshing schemes
have to be used in these cases. As an alternative, fixed-
grid methods that regularize the interface have been highly
successful in treating deforming interfaces. These include the
volume-of-fluid (VOF) method [143, 144], the front-tracking
method [145, 146] and the level-set method [147–149]. Instead
of formulating the flow of two domains separated by an
interface, these methods represent the interfacial tension as
a body-force or bulk-stress spreading over a narrow region
covering the interface. Then a single set of governing equations
can be written over the entire domain and solved on a fixed grid
in a purely Eulerian framework.

In this context the phase-field model approach can be
viewed as a physically motivated level-set method, which
allows for a rigorous derivation of dynamic model equations
based on the variation of an underlying energy functional4.
Thus instead of choosing an artificial smoothing function for
the interface, the phase-field model describes the interface by
a mixing energy. Again the idea can be traced back to van
der Waals [15, 16]. However, there are several peculiarities
to take into account compared to phase-field modelling in
the context of metallic material systems: first, vesicles have
no surface tension. Therefore the interfacial term has to be
constructed in a manner that it cancels the wall free energy
of the vesicle [154]. This is analogous to the situation
encountered in phase-field modelling of liquid crystals [118]
(see also section 5.2). Second, the phase-field approach raises
a complication due to the local membrane incompressibility,
which imposes a non-trivial constraint on the membrane. This
second problem can, for example, be cured by introducing the
dynamics of an additional tension field [155].

Lately such phase-field model constructions have success-
fully been applied to some phenomena of microscopic vesicle
dynamics: Du et al [150] were able to compute the equilib-
rium configurations of a vesicle membrane under elastic bend-
ing energy, with prescribed volume and surface area based on
the phase-field method. Successively Biben et al [154, 155]
extended this phase-field model for vesicle membranes to hy-
drodynamic flow. This allowed them to study the kinetic evo-
lution toward equilibrium shapes under the influence of shear
flow, as well as tank treading and tumbling. The latter is a
large step towards a more detailed understanding of circulation
physiology and rheology [156, 157], since red blood cells are
known to undergo such a tumbling process if diluted enough
with plasma [158].

4 Appropriate functionals involving the distribution of mean and Gaussian
curvature have been proposed by Canham [151] and Helfrich [152] and
reviewed by Seifert [153].
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6. Summary and outlook

The main concern of this review is to provide a brief overview
of the conceptual backgrounds of the phase-field method and
the recent issues the phase-field community is focusing on as
a basis for its application regarding the topic of this volume
and thus the following individual papers. Afterwards, the two
most prominent fields to which phase-field modelling has been
applied so far, namely metal physics and soft matter physics,
were reviewed for the contributions to these fields based on
the phase-field method, with special focus on nucleation in the
case of the metallic systems. Doing so, a particular focus was
put on demonstrating analogous steps in advancing in these
two different fields. Moreover, special emphasis was put on
pointing out that with respect to one of the large challenges of
modelling in condensed matter physics, namely scale-bridging
modelling, phase-field modelling—in particular when applied
in a system-bridging manner to similar phenomena occurring
at different scales in different condensed matter systems (see
figure 9)—seems to be a very promising approach for three
reasons:

(i) First, because phase-field models can easily be extended
starting from paradigmatic model formulations to increas-
ingly more dynamics driving physical mechanisms due to
the variational nature of the approach starting from a free
energy density formulation of the system [38, 3].

(ii) Second, because phase-field modelling is an approach at
one of the intermediate scales relevant in condensed matter
physics, naturally overlapping the simulation scales of
the methods at the molecular scale to some exteny and
extending it further to the dynamics at considerable larger
time and length scales.

(iii) Third, because it is quite easy to tune to different material
systems as long as it can be described in terms of well-
established phase diagrams and energy densities applying
to its different phases. Thus it seems feasible to exploit
a ‘smearing’ of scales for similar phenomena in different
condensed matter systems to identify intermediate length
scales, where a full overlap of different modelling
approaches as depicted in figure 9 arises and can give input
to the development of rigorous methodological concepts
applying over the scales.

To my knowledge the most advanced phase-field-based
theory taking this idea further is the phase-field crystal
method [159]. Yet it applies only to periodic systems,
leaving ample room for further development to support the
investigation of interfacial dynamics in condensed matter
systems along the lines of this review.
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